Dynamic taxonomies enable automatic classification of video content at scale. Instead of manually tagging thousands of hours of footage, multimodal AI can identify scenes, moods, actions, and key moments across your video library.
Real-World Applications
Content Libraries
- Scene-level categorization for episodic content
- Identification of specific actions (fights, chases, emotional moments)
- Automated content moderation
- Mood-based classification for recommendation systems
News & Sports
- Automatic distinction between studio/field footage
- Action detection (goals, plays, celebrations)
- Speaker/anchor identification
- On-screen text extraction and classification
User-Generated Content
- Brand moment detection
- Inappropriate content flagging
- Action/mood classification
- Trending content identification
Implementation Guide
Define Your Taxonomy Structure
Create hierarchical classifications that match your content:
POST /entities/taxonomies
{
"taxonomy_name": "content_classifier",
"nodes": [
{
"name": "moods",
"embedding_config": [
{
"embedding_model": "multimodal",
"type": "text",
"value": "Scene mood and emotional atmosphere analysis"
}
],
"children": [
{
"name": "high_energy",
"embedding_config": [
{
"embedding_model": "multimodal",
"type": "video",
"value": "https://assets.example.com/reference/action_scene.mp4"
},
{
"embedding_model": "text",
"value": "Fast-paced, dynamic, intense action and movement"
}
]
},
{
"name": "emotional",
"embedding_config": [
{
"embedding_model": "multimodal",
"type": "video",
"value": "https://assets.example.com/reference/dramatic_scene.mp4"
},
{
"embedding_model": "text",
"value": "Dramatic, emotional, intimate character moments"
}
]
}
]
}
]
}
Set Up Processing Pipeline
Configure your namespace and collection:
POST /namespaces
{
"namespace_name": "video_processing",
"vector_indexes": ["multimodal", "text"],
"payload_indexes": [
{
"field_name": "taxonomy.classifications",
"type": "keyword",
"field_schema": {
"type": "keyword",
"is_tenant": false
}
}
]
}
Process Videos
Ingest videos with intelligent sampling and taxonomy classification:
POST /ingest/videos/url
{
"url": "https://content.example.com/videos/episode_123.mp4",
"collection": "premium_content",
"feature_extractors": {
"interval_sec": 10,
"embed": [
{
"type": "url",
"vector_index": "multimodal"
}
],
"describe": {
"enabled": true,
"vector_index": "text"
}
},
"taxonomy_config": {
"taxonomy_ids": ["tax_abc123"],
"confidence_threshold": 0.75,
"min_segment_duration": 5
}
}
Intelligent Sampling Settings
Choose sampling intervals based on content type:
Content Type | Interval (sec) | Rationale |
---|---|---|
Action/Sports | 5-10 | Capture rapid changes |
Dialog Scenes | 15-20 | Focus on key moments |
News/Interviews | 20-30 | Capture scene changes |
Key Optimizations
Reference Selection
- Use high-quality, representative video clips for each category
- Include multiple examples per taxonomy node
- Update reference content as your library evolves
Confidence Thresholds
- Start high (0.85+) for critical classifications
- Lower (0.7+) for general categorization
- Adjust based on validation results
Search Integration
Query classified content:
POST /features/search
{
"collections": ["premium_content"],
"queries": [
{
"vector_index": "multimodal",
"type": "text",
"value": "high energy action sequence"
}
],
"filters": {
"AND": [
{
"key": "taxonomy.classifications.node_id",
"operator": "in",
"value": ["tax_node_high_energy"]
}
]
},
"group_by": {
"field": "asset_id",
"max_features": 5
}
}
Practical Tips
- Start Small
- Begin with 2-3 main categories
- Validate classification accuracy
- Expand based on results
- Optimize Processing
- Use appropriate sampling intervals
- Batch process similar content
- Monitor classification confidence
- Maintain Quality
- Regularly update reference content
- Review edge cases
- Adjust thresholds based on needs
Common Challenges
- Mixed Content
- Solution: Use multiple reference examples
- Example: News segments with both studio/field footage
- Temporal Context
- Solution: Adjust sampling intervals
- Example: Sports highlights need denser sampling
- Scale Issues
- Solution: Batch processing with appropriate intervals
- Example: Process episodic content in seasons
The power of dynamic taxonomies comes from combining intelligent sampling with multimodal understanding. By properly configuring your taxonomy structure and processing pipeline, you can automatically classify thousands of hours of content with high accuracy.
Additional Learning
Here's how some other leaders in the space are thinking about the same problem: